

Delamanid & Bedaquiline and Drug-resistant tuberculosis

Mohammad J. Nasiri, PhD, MPH

Shahid Beheshti University of Medical Sciences

Overview

Multidrug-resistant tuberculosis (MDR-TB) is a lifethreatening condition needing long poly-chemotherapy regimens

1.3 million HIV-negative and **0.214 million HIV-positive TB** deaths

only **157,903 cases of rifampicin-resistant (RR)-TB** cases detected and reported in <u>2020</u>

150,359 of them were enrolled on treatment as reported by the World Health Organization (WHO) (World Health Organization, 2021).

overview

MDR : *M. tuberculosis* strains Resistant to at least the two core anti-TB drugs, **isoniazid** (INH) and <u>rifampicin</u> (RIF)

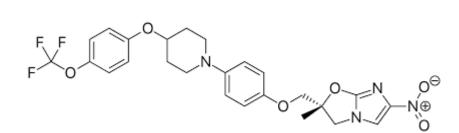
PreXDR : *M. tuberculosis* strains that fulfill the definition of MDR/RR-TB and that are also resistant to any FLQ

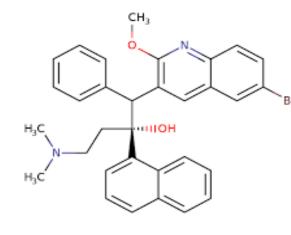
XDR: MDR plus resistance to FLQs and either linezolid (LZD) or bedaquiline (BDQ), the drugs which proved to be effective and reasonably safe (Group A drug)

New safe and effective drugs

Delamanid & Bedaquiline

Table 3.1. Grouping of medicines recommended for use in longer MDR-TB regimens^a


Groups and steps	Medicine	Abbreviation
Group A:	Levofloxacin or	Lfx
Include all three medicines	moxifloxacin	Mfx
	Bedaquiline ^{b,c}	Bdq
	Linezolid ^d	Lzd
Group B:	Clofazimine	Cfz
Add one or both medicines		
	Cycloserine or	Cs
	terizidone	Trd
Group C:	Ethambutol	E
Add to complete the regimen and when medicines from Groups A and B cannot be used	Delamanid ^e	Dlm
	Pyrazinamide ^f	Z
	Imipenem-cilastatin	Ipm–Cln
	or	Mpm
	meropenem ⁹	
	Amikacin	Am
	(or streptomycin) ^h	(S)
	Ethionamide or prothionamide ⁱ	Eto
		Pto
	P-aminosalicylic acid ⁱ	PAS



Delamanid

DLM is a promising nitro-dihydro-imidazooxazole derivative

- Inhibits the synthesis of methoxy- and keto-mycolic acid through the F420 coenzyme mycobacteria system, while generating nitrous oxide
- Approved by the European Medicines Agency (EMA) and recommended by WHO in 2014

Bedaquiline

- ✓ BDQ is a novel oral <u>diarylquinoline</u> drug that inhibits the ATP synthase of *M*. *tuberculosis*
- ✓ Approved by the US Food and Drug Administration (FDA) and the EMA in 2012 and recommended by WHO in 2013

International Journal of Infectious Diseases

Volume 124, Supplement 1, November 2022, Pages S90-S103

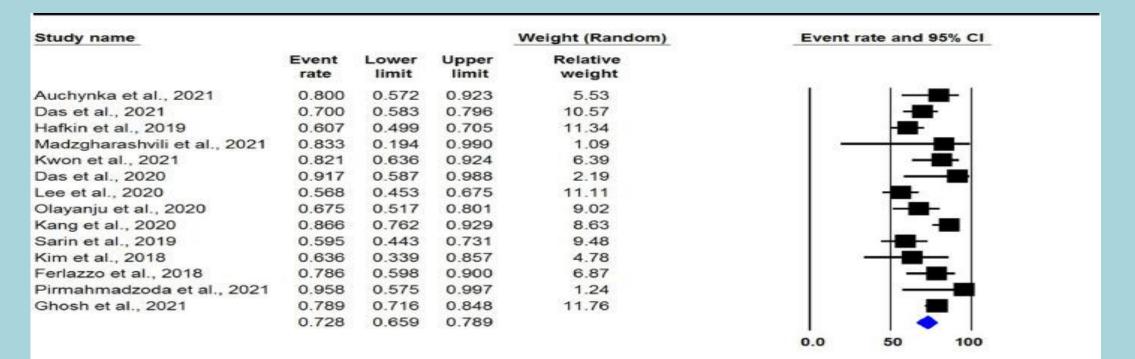
Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis

Mohammad Javad Nasiri¹ ⊠, Moein Zangiabadian¹ ⊠, Erfan Arabpour¹ ⊠, Sirus Amini¹ ⊠, Farima Khalili¹ ⊠, Rosella Centis² ⊠, Lia D'Ambrosio³ ⊠, Justin T. Denholm^{4 5} ⊠, H. Simon Schaaf⁶ ⊠, Martin van den Boom⁷ ⊠, Xhevat Kurhasani⁸ ⊠, Margareth Pretti Dalcolmo⁹ ⊠, Seif Al-Abri¹⁰ ⊠, Jeremiah Chakaya^{11 12} ⊠, Jan-Willem Alffenaar^{13 14 15} ⊠, Onno Akkerman^{16 17} ⊠, Denise Rossato Silva¹⁸ ⊠, Marcela Muňoz-Torrico¹⁹ ⊠, Barbara Seaworth²⁰ ⊠, Emanuele Pontali²¹ ⊠... Giovanni Sotgiu²² ⊠

Outcomes in observational studies

Study name				Weight (Random)	Event rate and 95% C
	Event rate	Lower limit	Upper limit	Relative weight	
Mohr-Holland et al., 2020	0.576	0.477	0.669	12.09	🖶
Madzgharashvili et al., 2021	0.875	0.463	0.983	3.68	+ ₽
Chang et al., 2018	0.818	0.493	0.954	5.54	
Kim et al., 2018	0.944	0.495	0.997	2.28	
Hacker et al., 2020	0.720	0.518	0.860	9.12	
Das et al., 2020	0.909	0.561	0.987	3.79	
Solodovnikova et al., 2021	0.975	0.702	0.998	2.34	
Kuksa et al., 2017	0.842	0.608	0.948	6.97	■
Hafkin et al., 2017	0.679	0.569	0.773	11.67	-∰
Hewison et al., 2017	0.765	0.630	0.861	10.61	-==
Mok et al., 2019	0.816	0.683	0.902	10.11	-==
Kang et al., 2020	0.880	0.804	0.929	11.04	
Auchynka et al., 2021	0.895	0.821	0.941	10.75	
	0.809	0.726	0.872		

Treatment success rate in observational studies. (DLM-containing regimens


The overall pooled treatment success rate in DLM-containing regimens group was found to be 80.9% (95% CI 72.6-87.2, I²: 73%)

0.0

100

Outcomes in observational studies

Treatment success rate in observational studies. (DLM and BDQ-containing regimens group)

The overall pooled treatment success rate in DLM- and BDQ-containing regimens group was found to be 72.8% (95% CI 65.9-78.9, I²: 62%)

•Outcomes in experimental studies

Treatment success rate in experimental studies. (DLM-containing regimens group)

Study name				Weight (Random)	Event rate and 95% CI
	Event rate	Lower limit	Upper limit	Relative weight	
Dooley et al., 2021	0.917	0.721	0.979	24.78	-
Gler et al., 2012	0.454	0.374	0.537	37.54	
von Groote-Bidlingmaier et al., 2019	0.765	0.706	0.816	37.68	
	0.725	0.442	0.898		
					0.0 50 10

The pooled treatment success rate in in DLM-containing regimens group was 72.5% (95% CI 44.2-89.8, I²: 95%)

Time to sputum culture conversion

- The median time to sputum culture conversion ranged from 1.1 to 1.7 months in the <u>DLM-containing regimens group</u>
- ✓ The pooled death rate and treatment failure in <u>DLM-containing regimens group</u> was found to be 7.8% (95% CI 5.5-11.0, I²: 13.0%) and 9.2% (95% CI 7.2-11.6, I²: 0.0%), respectively.

Adverse events

Author	Number of patients	QTcF pro- longation	Hepatic disorder/ Elevated liver enzyme	Renal failure/ Increased creatinine	Optic neu- ropathy/ Blurred vision	Ototoxicity/ Hearing loss	Hematological disorders (Anemia, thrombocy- topenia, eosinophilia)	Gastrointestinal symptoms (Diarrhea, vomiting, nausea, abdominal pain)	Peripheral neuropathy	Electrolyte disturbance	Arthralgia	Psychiatric disorder	Dermatologic symptoms
Auchynka et al., 2021	105	-	-	-	-	-	-	-	-	-	-	-	-
Chang et al., 2018	11	0	-	-	-	-	-	-	-	-	-	-	-
Dooley et al., 2021	24	-	-	-	-	-	-	-	-	-	-	-	-
Gler et al., 2012	141	-	-	-	-	-	-	-	-	-	-	-	-
Häcker et al., 2020	25	-	-	-	-	-	-	-	-	-	-	-	-
Hafkin et al., 2017	78	-	-	-	-	-	-	-	-	-	-	-	-
Hewison et al., 2017	51	-	-	-	-	-	-	-	-	-	-	-	-
Kuksa et al., 2017	19	0	0	0	0	0	0	0	0	0	0	0	0
Madzgharashvili et al., 2021	8	0	-	-	-	-	-	-	-	-	-	-	-
Mohr-Holland et al., 2020	99	-	-	-	-	-	-	-	-	-	-	-	-
Mok et al., 2019	49	-	-	-	-	-	-	-	-	-	-	-	-
von Groote- Bidlingmaier et al., 2019	226	-	-	-	-	-	-	-	-	-	-	-	-
Solodovnikova et al., 2021	19	-	-	-	-	-	-	-	-	-	-	-	-
Kim et al., 2018	8	1	-	-	-	-	-	-	-	-	-	-	1
Kang et al., 2020	108	2	-	-	-	-	-	2	-	-	-	-	-
Das et al., 2020	11	1	-	-	-	-	-	-	-	-	-	-	-

Adverse effects in included studies (DLM-containing regimens group)

QTcF: corrected QT with the Fredericia formula; DLM: delamanid

✓ In the DLM-containing regimens group :

- only 4/165 (2.4%) patients had QTcF prolongation
- 2/127 (1.5%) patients with gastrointestinal symptoms
- 1/27 (3.7%) patient with <u>dermatologic</u> symptoms

Adverse events

Adverse effects in included studies (DLM and BDQ-containing regimens group)

Author	Number of patients	QTcF pro- longation	Hepatic disorder/ Elevated liver enzyme	Renal failure/ Increased creatinine	Optic neu- ropathy/ Blurred vision	Ototoxicity/ Hearing loss	Hematological disorders (Anemia, thrombocy- topenia, eosinophilia)	Gastrointestinal symptoms (Diarrhoea, vomiting, nausea, abdominal pain)	Peripheral neuropathy	Electrolyte disturbance	Arthralgia	Psychiatric disorder	Dermatologic symptoms
Auchynka et al., 2021	20	-	-	-	-	-	-	-	-	-	-	-	-
Das et al., 2021	70	5	1	-	-	-	-	3	-	-	-	-	-
Hafkin et al., 2019	84	-	-	-	-	-	-	-	-	-	-	-	-
Madzgharashvili et al.,	2	0	-	-	-	-	-	-	-	-	-	-	-
2021													
Dooley et al., 2021	20	-	-	-	-	-	-	-	-	-	-	-	-
Kwon et al., 2021	28	17	-	-	-	-	-	1	-	-	-	-	-
Das et al., 2020	12	1	-	-	-	-	-	-	-	-	-	-	-
Lee et al., 2020	74	23	-	1	-	-	-	4	-	-	-	-	-
Olayanju et al., 2020	40	-	-	-	-	-	-	-	-	-	-	-	-
Kim et al., 2018	11	2	-	-	-	-	-	-	-	-	-	-	-
Ferlazzo et al., 2018	28	4	-	1	-	-	-	1	1	-	-	2	-
Kang et al., 2020	67	-	-	-	-	-	-	3	-	-	-	-	-
Sarin et al., 2019	42	-	-	-	-	-	-	-	-	-	-	-	-
Pirmahmadzoda et al., 2021	11	-	-	-	-	-	-	-	-	-	-	-	-
Ghosh et al., 2021	147	3	-	-	-	-	-	-	-	-	-	-	-

QTcF: corrected QT with the Fredericia formula; DLM: delamanid; BDQ: bedaquiline

QTcF prolongation (12.8%, 55/427), psychiatric disorders (7.1%, 2/28), gastrointestinal symptoms (4.5%, 12/267), peripheral neuropathy (3.5%, 1/28), renal failure/ increased creatinine (2%, 2/102), and hepatic disorders/elevated liver enzymes (1.4%, 1/70).

Subgroup analysis

Pooled treatment success rate among subgroups of studies in DLM group

Subgroups	No. of study	No. of patients	Treatment success %(95 % CI)	Heterogeneityl2 (%)	Begg's testP-value
Type of study: Observational studiesExperimental studies Age:	13 studies3 studies	591391	80.9 (72.6-87.2)72.5 (44.2-89.8)	7395	0.160.90
<u>≤40>40</u>	8 studies5 studies	564195	74.2 (61.3-84)85.6 (79.9-89.9)	85.40.0	0.711.00
Sex: MaleFemale	3 studies3 studies	2315	80.7 (59.7-92.1)83.6 (56.5-95.2)	0.00.0	1.001.00
Children/adult: Children/adolescentAdult	2 studies14 studies	19963	89.4 (66.0-97.0)78.4 (69.3-85.4)	0.086.0	NA*0.45

* There must be at least three studies to run publication bias.DLM: delamanid; CI: confidence interval

- ✓ The treatment success rate in patients aged ≤40 and >40 in <u>DLM containing</u> regimens was 74.2% and 85.6%, respectively
- ✓ In males and females : 80.7% and 83.6%, respectively
- $\checkmark~$ In children and adults :89.4% and 78.4%, respectively

Jornal Brasileiro de Pneumologia v

SYSTEMATIC REVIEW AND META-ANALYSIS • J. bras. pneumol. 48 (2) • 2022 • https://doi.org/10.36416/1806-3756/e20210384 / COPY

8 Bedaquiline-containing regimens and multidrug-resistant tuberculosis: a systematic review and meta-analysis

Hossein Hatami Giovanni Sotgiu Narjess Bostanghadiri Sahel Shafiee Dolat Abadi Bita Mesgarpour

Hossein Goudarzi Giovanni Battista Migliori Mohammad Javad Nasiri

ABOUT THE AUTHORS

ABSTRACT

Objective:

Multidrug-resistant tuberculosis (MDR-TB) is a life-threatening infectious disease. Treatment requires multiple antimicrobial agents used for extended periods of time. The present study sought to evaluate the treatment success rate of bedaquiline-based regimens in MDR-TB patients.

Methods:

This was a systematic review and meta-analysis of studies published up to March 15, 2021. The pooled treatment success rates and 95% CIs were assessed with the fixed-effect model or the random-effects model. Values of p < 0.05 were considered significant for publication bias.

Results:

A total of 2,679 articles were retrieved by database searching. Of those, 29 met the inclusion criteria. Of those, 25 were observational studies (including a total of 3,536 patients) and 4 were experimental studies (including a total of 440 patients). The pooled treatment success rate was 74.7% (95% CI, 69.8-79.0) in the observational studies and 86.1% (95% CI, 76.8-92.1; p = 0.00; $I^2 = 75\%$) in the experimental studies. There was no evidence of publication bias (p > 0.05).

Conclusions:

In patients with MDR-TB receiving bedaquiline, culture conversion and treatment success rates are high even in cases of extensive resistance. Bedaquiline-containing regimens and multidrug-resistant tuberculosis: a systematic review and meta-analysis

Included studies (n = 29)

Observational studies (n = 25) Experimental studies (n = 4)

Outcomes in the observational studies

Treatment success rate in the observational studies included in the meta analysis

Study	Statistic	s for each s	study	Weight (Random)	Event rate and 95%	СІ
	Event	Lower	Upper	Relative		
	rate	limit	limit	weight		
Koirala et al.(11)	0.742	0.695	0.783	5.16	I I 💻	
Kwon et al.(16)	0.821	0.636	0.924	2.94		-
Shi et al. ⁽¹⁷⁾	0.921	0.876	0.950	4.43		
Gao et al.(18)	0.853	0.793	0.898	4.68		
Barvaliya et al.(19)	0.803	0.725	0.863	4.61		F
Kashongwe et al. ⁽²⁰⁾	0.531	0.361	0.694	3.77		_
Das et al. ⁽²¹⁾	0.923	0.609	0.989	1.14	Ι Γ—	_
Lee et al. ⁽²²⁾	0.568	0.453	0.675	4.54		
Kim et al. ⁽²³⁾	0.618	0.553	0.679	5.08		
Mase et al. ⁽²⁴⁾	0.857	0.573	0.964	1.79		
Olayanju et al. ⁽²⁵⁾	0.648	0.559	0.727	4.81		
Salhotra et al. ⁽²⁶⁾	0.827	0.796	0.855	5.20		
Chesov et al.(27)	0.553	0.461	0.641	4.82		-
Kang et al. ⁽²⁸⁾	0.828	0.764	0.877	4.75		-
Sarin et al. ⁽²⁹⁾	0.595	0.443	0.731	4.03		_
Kempker et al. ⁽³⁰⁾	0.656	0.533	0.762	4.36		
Taune et al. ⁽³¹⁾	0.935	0.853	0.973	3.11		-
Ferlazzo et al. ⁽³²⁾	0.786	0.598	0.900	3.12		_
Hewison et al.(33)	0.585	0.476	0.687	4.61		
Ndjeka et al. ⁽³⁴⁾	0.730	0.664	0.787	4.97		
Zhao et al. ⁽³⁵⁾	0.760	0.684	0.823	4.78	🚘	
Kim et al. ⁽³⁶⁾	0.615	0.456	0.753	3.93		
Achar et al. ⁽³⁷⁾	0.979	0.741	0.999	0.67		
Guglielmetti et al.(38)	0.800	0.658	0.893	3.65		F .
Borisov et al.(10)	0.713	0.653	0.766	5.06		
	0.747	0.698	0.790			
					0.0 50	10

- ✓ The pooled treatment success rate was 74.7% (95% CI, 69.8-79.0; I2 = 86%;
- ✓ The pooled death and treatment failure rates were 9.0% (95% CI, 6.8-12.0; I2 = 75%) and 5.7% (95% CI, 3.6-8.9; I2 = 85%), respectively.

Outcomes in the experimental studies

Study	Statisti	cs for each	study	Weight (Random)	Event rate and 95% Cl				
	Event rate	Lower limit	Upper limit	Relative weight					
Conradie et al.(39)	0.899	0.827	0.943	26.77					
Tweed et al.(40)	0.967	0.876	0.992	12.90					
Pym et al.(41)	0.795	0.734	0.845	32.81					
Diacon et al.(42)	0.788	0.673	0.870	27.52					
	0.861	0.768	0.921						
					0.0 50 100				

Treatment success rate in the experimental studies included in the meta-analysis

 ✓ The pooled treatment success rate was 86.1% (95% CI, 76.8-92.1; p = 0.00; l2 = 75%

 Mortality rates were reported in 2 studies, and the pooled death rate was 3.6% (95% CI, 0.6-9.2).
Only 1 study reported a treatment failure rate, which was 1.8%

Adverse effects

Adverse effects in the studies included in the meta-analysis

A uthor	QTe prolongation		Renal failure/ Inoreased oreatinine levels	Optio neuropathy/ Blurred vision	Ototoxieity/ Hearing loss	Hematologioal disorders (anemia, thrombooytopenia, eosinophilia)	Gastrointestinal symptoms (diarrhea, vomiting, nausea, abdominal pain)		Eleotrolyte disturbance	Arthralgia	Psyohiatrio disorder	Dermatologio symptoms
Kwon et al.(14)	17	NR	N/R	N/R	N/R	N/R	1	N/R	N/R	N/R	N/R	N/R
Shi et al. 💷	85	59	21	13	10	24	15	16	5	3	9	2
Gao et al.💷	39	35	9	2	6	15	11	8	11	2	6	N/R
Barvaliya et al. 🚥	11	6	N/R	5	-4	N/R	33	4	N/R	9	4	18
Kashongwe et al.®®	3	1	N/R	2	5	14	15	15	N/R	N/R	N/R	15
Das et al. ⁽²¹⁾	1	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Lee et al. 📪	2.3	N/R	1	N/R	N/R	N/R	4	N/R	N/R	N/R	N/R	N/R
Kim et al. ⁽²³⁾	7	28	N/R	N/R	N/R	N/R	32	N/R	N/R	34	N/R	8
Mase et al.🕫	6	N/R	N/R	N/R	2	2	4	7	4	N/R	3	3
Olayanju et al.🕬	12	36	N/R	8	59	43	30	30	N/R	20	9	N/R
Salhotra et al. 🕫	14	13	4	N/R	8	22	35	26	7	N/R	15	1
Kempker et al. 139	1	1	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Taune et al.🚥	1	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Ferlazzo et al. ⁽³²⁾	4	N/R	1	N/R	N/R	N/R	1	1	N/R	N/R	2	N/R
Hewison et al. ^[23]	12	27	5	1	9	3	34	21	N/R	N/R	N/R	6
Ndjeka et al. 🍽	10	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Achar et al. ^[27]	0	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Guglielmetti et al.🕬	13	17	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Borisov et al.(10)	24/248	N/R	47/413	10/413	N/R	86/412	130/413	96/412	N/R	84/412	29/413	63/412
Conradie et al.🕬	0	17	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
rweed et al. 🐡	0	4	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
feito aleatório combinado	10.4 (6.2-17.0)	11.7 (6.5-20.0)	4.6 (2.3-8.9)	3.8 (2.4-6.1)	7.8 (2.3-23.0)	13.6 (7.1-24.7)	15.3 (7.5-24.1)	13.8 (9.4-24.0)	4.7 (1.3-15.2)	8.1 (4.3-14.6)	5.1 (3.3-7.9)	7.5 (3.3-16.0)
teterogeneidade, ² (%)	92%	93%	85%	50%	96%	94%	94%	94%	8996	89%	68%	91%
Teste de Begg, p	0.46	0.21	0.13	0.54	0.90	0.71	0.90	0.72	0.65	0.00	0.82	0.22

QTc: corrected QT; and N/R: not reported.

Most of the adverse events potentially attributed to bedaquiline-containing regimens were gastrointestinal symptoms (15.3%), peripheral neuropathy (13.8%), and hematological disorders (13.6%)

Subgroup analysis

Pooled treatment success rates for subgroups of studies

Subgroup	No. of studies	No. of patients	Treatment success rate (%) (95% CI)	Heterogeneity I ² (%)	Begg's test value of p
Treatment regimen:					
Regimen containing BDQ	22	3,287	74.5 (67.6-80.3)	91	0.61
Regimen containing BDQ+DLM	7	292	73.9 (62.1-83.0)	72	0.03
Type of study:					
Observational study	25	3,536	74.7 (69.8-79.0)	86	0.18
Experimental study	4	440	86.1 (76.8-92)	75	0.08

BDQ: bedaquiline; and DLM: delamanid.

- ✓ The treatment success rate in patients receiving bedaquiline-containing regimens was 74.5%
- For patients receiving treatment with bedaquiline and delamanid, the treatment success rate was 73.9%
- The treatment success rates in the observational and experimental studies included in the meta-analysis were 74.7% and 86.1%, respectively.

Thank you for your attention